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Abstract—Since 2005, PrimeGrid has grown from a small project 
factorising RSA numbers by brute force to one of the largest 
volunteer computing projects in the world. The project has 
discovered over 60 new million-digit primes, as well as record 
sized twin and Sophie Germain primes. This paper will present a 
history of the project, the algorithms and software used by 
PrimeGrid and how the BOINC distributed computing 
architecture is used to harness tens of thousands of computers. 
We also highlight some recent results from several current prime 
search sub-projects. 

Keywords-volunteer computing; number theory; primality 
testing; computational mathematics; prime numbers 

I.  BACKGROUND 
The properties and distribution of prime numbers have 

fascinated mathematicians since Renaissance times, in 
particular the search for very large primes.  Indeed even today 
Riemann’s famous Hypothesis [1] remains unproven and an 
active area of research.  In the 17th century the search for large 
primes focused on Mersenne numbers having the form 2p-1, 
where p is itself a prime.  In 1558 Pietro Cataldi proved the 
primality of 217-1 and 219-1 [2], both 6 digit numbers, but 
further progress was slow, as the only known method to prove 
a number as prime or composite was trial division, which 
requires O(√N) divisions and rapidly becomes impractical.  
Indeed, Mersenne himself claimed (incorrectly) that 2257-1 was 
prime, but was only proved wrong in 1947! 

In 1867 the largest known prime contained only 13 digits, 
until Lucas’ startling discovery of a 39 digit Mersenne prime 
2127-1, using a number theoretic method based on Lucas 
Sequences, much more efficient than trial division.  This 
method was such a success that it is still in use today in an only 
slightly modified form. 

However, the most major innovation in the search for large 
primes came with the advent of electronic computers in the 
1950s.  In 1951 and 1952 alone, the record for the largest 
known prime was increased from 79 digits to 687, and the 
length of the largest known prime has continued to grow 
exponentially in time up to the present day (see Fig. 1). 

From the 1950s until the mid 1990s interest in searching for 
large primes was confined mainly to professional 
mathematicians, who had access to the latest computer 
hardware.  Throughout the 80s and early 90s, several record-

sized primes were found using Cray supercomputers, 
culminating with a 378362 digit Mersenne prime in 1996.  
However, later that year, another innovation was to change the 
way in which large primes could be found – volunteer 
computing. 

Figure 1.  	  Size of largest known prime per year throughout the computer era, 
data from [3] 

II. VOLUNTEER COMPUTING AND BOINC 
Volunteer Computing is a paradigm within the field of 

Distributed Computing where a computational task, usually of 
a scientific nature, is subdivided into smaller work units that 
will be executed independently by volunteers’ computers.  
Thus is it most suitable for ‘embarrassingly parallel’ problems, 
where each work unit requires no data from other work units, 
and so can be processed at the same time – in parallel.  
Volunteer Computing projects use a client/server architecture, 
where volunteers connect their computers (the clients) to a 
central server over the Internet, download work units, process 
them and return them to the server.  Typically, the volunteers’ 
contribution of CPU time is rewarded by a credit system, based 
on the number of work units, or some other measure of the 
amount of work done by each participant.  Volunteer 
computing is thus a benefit to the project, which gets access to 
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potentially very large aggregate computational power at little 
or no cost, and also to the volunteers, who are able to engage 
with and contribute towards active scientific research.  A fuller 
discussion of the motivations of participants and reward 
mechanisms is given in [4]. 

When volunteer computing first became popular in the mid 
1990s, typical computer processors used approximately the 
same amount of electrical power whether they were running 
programs or idle.  Thus volunteer computing was touted as a 
way to make use of these ‘spare’ processor cycles at little 
marginal cost to either the volunteer or the project.  Today, 
modern CPUs such as the Intel i3/5/7 series have a much 
greater focus on power-saving features for use in battery 
powered devices, and so draw much less power when idle (for 
example only 35% [5]) then when under full load.  The number 
of participating users in volunteer computing has stagnated and 
declined slightly since 2010 (see Fig. 2), and reason for this is 
that the cost of electricity usage to the participant is now non-
negligible. 

 

Figure 2.  Number of active users - those with completed tasks in last 30 days 
- on all BOINC projects (data from [6]), compared with PrimeGrid. 

The first example of a Volunteer Computing project was 
the Great Internet Mersenne Prime Search (GIMPS) [7], which 
was set up in 1996 by George Woltman, specifically focused 
on searching for large Mersenne primes.  Primality testing is 
well suited for volunteer computing as the status of each 
candidate number is independent of any other, and so 
individual tests (or ranges of tests) can be packaged as work 
units and distributed to the client computers.  GIMPS proven 
immediately to be very successful, and since finding a 420921 
digit prime in 1996 has not only held the record for the largest 
known prime, but also extended it by finding a further 13 new 
primes.  Today, the largest known prime is 257885161-1, which 
has some 17 million digits!  GIMPS uses PrimeNet, a 
client/server system written by Scott Kurowski specifically to 
handle the generation, distribution and management of GIMPS 
work units. 

Another high profile early use of Volunteer Computing was 
SETI@Home [8], first made public in 1999.  Developed by the 

Space Sciences Laboratory at Berkeley, SETI@Home analyses 
data from radio telescopes to detect potential signals from 
extraterrestrial civilisations.  Recorded signals from the 
Arecibo raido telescopt are stored, split into short blocks, and 
distributed to volunteers’ computers for analysis. While no 
such signal has yet been discovered, SETI@Home has had two 
major successes.  Firstly, it attracted a great deal of publicity 
which has drawn in a large user base (over 1.5 million users 
since the project began), some of whom also contribute to other 
projects.  Secondly, the client and server software developed by 
the SETI@Home team was generalized and released in 2002 as 
the Berkeley Open Infrastructure for Network Computing 
(BOINC) [9]. 

BOINC is now the largest platform for Volunteer 
Computing, with over 3.2 million users, around 70 projects in 
total (including SETI@Home), and an aggregate performance 
of around 7 PFLOP/s, equivalent to the 6th largest 
supercomputer in the world [10].  The BOINC architecture 
consists of three parts: a server package, which is deployed by 
each individual project, providing a website, an administration 
interface for creating work units, and a web service which 
sends tasks to and receives results from connected computers; 
the client, which is installed by volunteers on their computers 
and set to connect to one or more project servers to receive 
work, manages the execution of a queue of work units subject 
to user preferences, and returns the results to the servers; and a 
library, which is used by software developers to enable their 
programs to communicate with the client, handles common 
functionality such as suspending and resuming computation, 
checkpointing and progress reporting. 

Running a project using BOINC is advantageous to the 
project administrators, as they are able to concentrate on the 
scientific aims of the project, while BOINC helps to deal with 
issues which affect all volunteer computing projects: 

• Unreliable client computers: due to hardware or 
software errors, it is possible for clients to return 
incorrect or incomplete results for a work unit.  
BOINC can automatically replicate work units to 
multiple clients, and compare the results.  If they do 
not agree, subsequent replicates of the work unit are 
generated, until a consensus correct result is obtained 
and the erroneous results are marked as invalid. 

• Slow or disconnected computers: work units are 
created with a particular deadline, typically a few 
times the expected processing time.  Once a work unit 
has been sent to the client, the client manages the 
execution of all the work units in its queue in order to 
meet the deadlines.  If a work unit passes its deadline 
and the client has not yet started work, it will report to 
the server that it has abandonded the test.  If the server 
does not receive any response from the client before a 
work unit deadline has expired, it will automatically 
send out the work unit to another client.  Thus overall 
progress can be made on the project, without being 
unduly delayed by individual clients 

• Hardware and software heterogeneity: BOINC 
supports a wide range of operating systems 
(Windows, Mac OS X, Linux, and more) and 
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hardware (x86 CPUs, GPUs, mobile devices).   
Projects need only to provide application versions to 
run on some particular combination of OS and 
hardware, and BOINC automatically detects the 
capabilities of the client computer and distributes only 
suitable work units.  The capability for users to 
compile their own optimized or ported versions of 
project applications is also available. 

III. PRIMEGRID 
In June 2005 a BOINC project called Message@Home was 

set up by Rytis Slatkevičius, a Lithuanian secondary school 
student, as a test-bed for a Perl implementation of BOINC.  As 
example applications, the brute-force decryption of a message 
encoded with the MD5 algorithm [11] and the factorization of 
the RSA-640 number [12] were chosen as they had suitably 
small-sized work units. In September 2005 the MD5 
application was discontinued and project name was changed to 
PrimeGrid.  By November, RSA-640 was successfully 
factorized by another group [13], and the project moved on to 
attempt factorization of RSA-768.  The following year, the 
RSA-768 effort too was abandoned and an attempt was made 
to generate a list of primes starting from 2.  After computing all 
primes up to 6.4 × 1011 (approximately 23 billion prime 
numbers), this project was again abandoned.  The project 
finally found lasting success through collaboration with the 
(now defunct) Riesel Sieve project, another independent 
volunteer computing project already established in the prime 
searching community, to find large Twin primes (primes which 
have a difference of 2).  In November 2006, the PrimeGrid 
Twin Prime Search was launched, and after only two months of 
work, found a then-record Twin prime pair - 
 2003663613 × 2195000 ± 1 .  The ‘twin prime conjecture’ states 
that there are infinitely many pairs of twin primes, and though 
recent progress [14] showed that infinitely many primes of 
primes separated by less than 70,000,000 exist, the conjecture 
remains unproven.  PrimeGrid subsequently extended the 
record twice, most recently in 2011 with the discovery of 
 3756801695685 × 2666669 ± 1 , which has 200700 digits.   

Since 2006 the project has grown dramatically, with the 
addition of several new prime searches available through 
BOINC, which are summarized in Table 1.  Each subproject is 
either searching for larger and larger primes of a given form, 
for example Generalised Fermat Primes b2n

+1, or attempting to 
prove a specific Number Theoretic conjecture.  For example 
the Seventeen or Bust subproject arises from a theorem by 
Sierpiński in 1960 [15] that there exist infinitely many odd 
integers k such that all Proth numbers k × 2n + 1 are composite 
irrespective of n.  Within 2 years Selfridge showed by the use 
of covering sets that k = 78557 has this property, and it is an 
example of what is now called a Sierpiński number.  The 
Sierpiński problem is then to show that 78557 is the smallest 
such number, which can be done by exhibiting a prime for each 
odd k < 78557.  By 2002 only 17 values of k remained for 
which no prime was known, and an organized search was set 
up known as ‘Seventeen or Bust!’, using a volunteer computing 
system developed by Louie Helm and David Norris [16].  By 
2007, the list of remaining k was reduced to 6, and after several 
years without further finds, they joined with PrimeGrid to 

continue the search.  Similar conjectures exist for Riesel 
numbers and Proth numbers with prime k.  The latest status and 
full history of these conjectures is discussed in Section III.B 
and can be found online [17][18]. 

As PrimeGrid has grown in popularity it has become one of 
the largest volunteer computing projects in the world (see 
Table 2), and is now run by a team of volunteers, including the 
author.  As a result, almost all of the subprojects have yielded 
world-record sized primes, the most recent of which are listed 
below: 

• Largest Cullen prime: 6679881 × 26679881 + 1 (2.01 
million digits), discovered in July 2009 by Magnus 
Bergman. 

• Largest Woodall prime: 3752948 × 23752948 − 1 (1.13 
million digits), discovered in December 2007 by 
Matthew Thompson. 

• Largest Twin prime: 3756801695685 × 2666669 ± 1 
(200700 digits), discovered in December 2011 by 
Timothy Winslow. 

• Largest Sophie Germain prime: 
 18543637900515 × 2666667 – 1 (200701 digits), 
discovered in April 2012 by Philipp Bliedung. 

• Largest Generalised Fermat prime: 475856524288 +1 
(2.98 million digits), discovered in August 2012 by 
Masashi Kumagai. 

• Largest Riesel prime: 502573 × 27181987 − 1 (2.16 
million digits), discovered in October 2014 by Denis 
Iakovlev. 

• Longest arithmetic progression of primes: 
43142746595714191 + 23681770 × 23# × n for 
n = 0 .. 25, discovered in April 2010 by Benoãt 
Perichon (note 23# denotes the ‘primorial’ product of 
all primes ≤ 23). 

• Most mega-primes: As of October 2014, PrimeGrid 
has discovered 63 primes with over 1 million digits 
(mega-primes), out of a total of 114 known [3] 

PrimeGrid currently has three aims.  Firstly, we engage 
members of the public in active mathematical research, and 
give them the chance to be the discoverer of very large primes.  
The first finder is always given primary credit for the 
discovery, and the associated kudos is an important motivation 
for many of our users.  Secondly, we provide education about 
computational number theory and mathematics in general.  
This takes place mainly in our active user forum, where there 
are a mixture of expert mathematicians, amateur enthusiasts, 
and complete novices – ultimately everyone benefits from this 
interaction.  There is also a great deal of user involvement in 
the development and testing of new applications, resulting in 
the award of the ‘Volunteer Tester’ title.  Thirdly, but not least, 
we aim to make a significant contribution to the field of 
Number Theory.  Besides the record-sized primes reported 
above, PrimeGrid also contributes to several important 
mathematical projects: 



TABLE I.  DETAILS OF CURRENT AND PREVIOUS PRIMEGRID 
SUBPROJECTS RUNNING ON BOINC 

Subproject Date Started Notes 
Twin Prime Search Nov 2006 Merged with Sophie Germain 

Search in Aug 2009 
Cullen Prime Search Aug 2007 n × 2n+1 
Woodall Prime Search Aug 2007 n × 2n −1 
Proth Prime Search Feb 2008 k × 2n +1, k < 2n 
321 Prime Search Jun 2008 Proth primes, k=3 
Prime Sierpiński 
Problem 

Jul 2008 Proving 271129 is the smallest 
prime Sierpiński number 

AP26 Search Dec 2008 Searching for sequences of 26 
primes in arithmetic 
progression, search completed 
in April 2010 

Sophie Germain Search Aug 2009 Searching for Sophie Germain 
pairs of primes p, 2p + 1, and 
Twin primes 

Seventeen or Bust! Jan 2010 Proving 78557 is the smallest 
Sierpiński number 

The Riesel Problem Mar 2010 Proving 509203 is the smallest 
Riesel number 

Generalised Fermat 
Prime Search 

Jan 2012 b2n 
+ 1 for n=20,22 

Sierpiński /Riesel Base 
5 Problem 

Jun 2013 Proving 159986 and 346802 are 
the smallest base 5 Sierpiński 
and Riesel numbers 
respectively 

Extended Sierpiński 
Problem 

Jun 2014 Proving 271129 is the second 
Sierpiński number 

TABLE II.  COMPARISON OF PRIMEGRID WITH OTHER MAJOR 
VOLUNTEER COMPUTING PROJECTS (OCT 2014) 

Project Total 
Users 

Current 
Users 

Current 
Computers 

Current 
Performance 

GIMPS 128,000 3,800 22,000 0.2 PFLOP/s 
PrimeGrid 84,400 11,100 16,500 1.1 PFLOP/s 
Collatz Conjecture 37,000 3,200 6,000 1.3 PFLOP/s 
GPUGrid 24,500 2,700 4,000 1.4 PFLOP/s 
SETI@Home 1,512,300 121,800 2,600,000 0.7 PFLOP/s 
 

A. Fermat Number Factoring 

The Fermat numbers Fn = 22n
 + 1, named for Pierre de 

Fermat who first studied them in the 17th century, have been 
shown to be prime for n = 0 .. 5, but no others Fermat primes 
are known.  Indeed, the size of these numbers grows so rapidly 
that determining their status as prime or composite (and if so 
fully factorizing them) is a significant computational task.  
Lucas proved that all factors of Fermat numbers have the form 
k × 2n+1 + 1, i.e. they must be Proth Primes.  As a result, even 
although most primes found in PrimeGrid’s Proth Prime search 
are relatively small (having around 400,000 digits), they are 
each tested to see if they divide any Fermat numbers.  At 
present, F5 through F32 are proven composite, although not all 
are yet complete factorised.  The largest Fermat number F3329780 
whose status is known (composite) was shown to have a factor 
193 × 23329782 + 1, found by Raymond Ottusch in July 2014, 
which is the first and only known mega-prime Fermat factor.  
The latest status of the Fermat Factoring project is recorded by 
Wilfrid Keller [19] but it remains unproven if any further 
Fermat primes exist, and the search continues. 

B. Conjecture Subprojects 
In addition to the Sierpiński conjecture and the Seventeen 

or Bust (SoB) sub-project mentioned earliere, PrimeGrid leads 
the search for the primes needed to prove a number of related 
conjectures. 78557 is the smallest known Sierpiński number, 
and 271129 is the second.  271129 happens to be prime, and so 
the Prime Sierpiński Problem (PSP) is to show that it is indeed 
the smallest such prime.  Assuming the resolution of the 
Sierpiński conjecture, an additional 16029 prime values of 
78557 < k < 271129 must be tested to find Proth Primes.  
Primegrid tests increasing values of n for each k, until a prime 
is found at which point that k is removed from the search. To 
date only 8 k’s remain without a known prime. 

Assuming proof of the Prime Sierpiński Problem, a third 
conjecture may be made, that 271129 is the second Sierpiński 
number, which can be proven by exhibiting a Proth prime for 
each of the 80256 composite numbers 78557 < k < 271129.  
This task is known as the Extended Sierpiński Problem (ESP).   
Currently 12 k’s remain in this search. 

Similarly to Sierpiński numbers, k’s for which no Proth 
Primes exist, it is possible to define a Riesel number as a k for 
which no Riesel Primes exist.  509203 is the smallest known 
Riesel number, and proving that this is indeed the smallest is 
significantly more challenging than the Sierpiński Problem 
since over 6 times as many k need to be tested.  As a result 50 
k’s remain in the search.  However, due to the greater number 
of tests, the current value of n which has been reached (7.2 
million) is lower than the other both SoB at 27 million and PSP 
at 17 million.  Since 509203 is prime, there is no equivalent of 
the Prime or Extended Sierpiński Problems for the Riesel case. 

 

Likewise, these conjectures exist for bases other than 2, and 
PrimeGrid is also leading the search for primes to prove the 
Riesel and Sierpiński base 5 conjectures.  We will not discuss 
these in detail here, but the latest status is available online [20].  
Overall progress on these projects is steady, as shown in Fig. 3. 

Figure 3.  k remaining in each conjecture sub-project against time 
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C. Wieferich and Wall-Sun-Sun Primes 
While the majority of PrimeGrid subprojects find many 

large primes, we also are working to find examples of two 
smaller, but extremely rare classes of primes. 

A Wieferich prime is defined as a prime p which satisfies 
the condition that: 

 

 p2 | 2p-1 – 1 (1) 

 

They were first described by in 1909 by Arthur Wieferich 
[21], who showed that if Fermat’s Last Theorem were false for 
a particular prime exponent p, then that p is a Wieferich prime.  
The converse does not hold, of course.  Only two Wieferich 
primes are known, p = 1093 and 3511, and Crandall et al [22] 
showed via a computational search that no others exist up to 
4 × 1012. This bound was subsequently extended to 6.7 × 1015 
by others including Dorais and Klyve [23] without finding 
further primes.  Nevertheless, there are expected to be infinitely 
many Wieferich primes, with each p having approximately 1/p 
‘probability’ of satisfying the condition.  We have extended the 
search up to 3.2 × 1017, and no further Wieferich primes have 
yet been discovered. 

Another class of primes are those which satisfy: 

 

 p2 | Fp-(
p

5
 ),   p > 5 (2) 

 

They are known as Wall-Sun-Sun [24][25] primes.  Unlike 
Wieferich primes, no Wall-Sun-Sun primes have yet been 
found, despite several prior attempts which verified none exist 
for p < 9.7 × 1014.  We have continued up to 6.8 × 1016 without 
success, and the search is ongoing. 

D. A World Record GFN Prime 
Since 1989 the largest known prime has always been a 

Mersenne prime.  While the Generalised Fermat Number  
(b2n

 + 1) prime search has been running for n < 20 since 2009 
using PRPNet (see Section IV.C), the development of more 
efficient software using high performance Graphics Processing 
Units (GPUs) [26] enabled the search to be moved to BOINC 
and start testing higher values of n.  Currently the n = 22 search 
has reached b = 29230, so all candidates being tested have at 
least 18.7 million digits.  Thus any new prime would become 
the largest prime ever found, and the first non-Mersenne to 
hold this position for over 25 years. 

IV. ALGORITHMS AND SOFTWARE 
None of the our achievements would have been possible 

without the support of a vibrant community of software 
developers who write the programs used by the project.   We 
use a wide range of software, most of which is developed by 
members of the PrimeGrid user community and is open source.  
The most important of these are described below. 

A. Sieving 
The first stage in a particular prime search subproject is to 

reduce the number of candidates by sieving – that is testing 
divisibility by a large number of fairly small primes (e.g. up to 
~1017, for TRP Sieve) to find and remove composite 
candidates.  Sieving is carried out to a particular depth (the size 
of the trial factors) depending on the relative speed of removal 
of candidates by sieving and by direct primality testing.  Once 
the CPU time taken to find a factor becomes more than twice 
(to allow for the fact that tests are replicated to two clients) the 
amount of time taken to primality test a candidate, the optimal 
sieve depth has been reached and the sieve is stopped.  The 
optimal sieve depth depends on the efficiency of both the 
sieving and primality testing software, as well as the quantity 
and type of hardware being used for each, and so sieving 
activity is kept under regular review by the PrimeGrid 
administrators.   Typically a sieve is run concurrently with the 
associated primality testing sub-project(s), with the sieve works 
on a much higher range of candidates.  Those candidates which 
pass through the sieve are then added to the list for primality 
testing. 

For Proth and Riesel primes two approaches are used, 
fixed-n and fixed-k sieving.  Fixed-n sieving is employed when 
a large range of k are to being and there are only a small 
number (or even 1) of values of n, such as in the case of the 
Sophie Germain search sub-project.  Since the aim is to find 
factors p such that (for Riesel numbers): 

 

 k × bn −1 = 0 (mod p) (3) 

 

Since n is fixed, then 

 

 k = b−n (mod p) (4) 

 

Thus the sieving program must compute b-n (mod p) for 
each p with the range being used as a sieve, and if any of the 
computed values of k falls within the range of candidates, then 
a factor is found and that k can be eliminated.  An analagous 
expression also exists for Proth numbers, where k is negated.  
This process is implemented in the ppsieve and tpsieve 
programs developed by Ken Brazier [27].  As well as 
implementation on CPUs, very efficient versions for GPUs 
using CUDA [28] and OpenCL [29] have been developed, to 
the point where most fixed-n sieving is now done exclusively 
using GPUs. 

By contrast the conjecture projects, which have very few k 
remaining, used the fixed-k approach.  Similarly to fixed-n, we 
start with the condition for p to be a factor of a Riesel Number: 

 

 k × bn −1 = 0 (mod p) (5) 

 

Then for fixed k, 



 

 bn = 1/k (mod p) (6) 

 

 n = logb(1/k) (mod p) (7) 

 

Thus for each p we must compute 1/k (mod p) – the 
modular multiplicative inverse, and then the discrete logarithm 
in base b to determine whether a given p factors any candidate 
value in the range, with the calculated n.  These algorithms 
have been have been implemented in the srsieve program by 
Geoff Reynolds and Mark Rodenkirch [30].  No GPU 
implementation has yet been developed. 

Lastly, for Generalised Fermat Numbers an algorithm was 
devised by Carmody [31] which has been implemented in 
various forms for different hardware.  Most recently a CUDA 
GPU version was developed by Anand Nair in 2012.  Within 
six months of work sieving was completed to a depth of 
1.9 × 1019 (for n = 19), and sieving is currently suspended. 

B. Primality Testing 
The remaining candidates after sieving are then 

individually tested for primality, using a variety of different 
algorithms depending on the form of number. 

For Riesel numbers, the Lucas-Lehmer-Riesel test [32] is 
used, which computes the sequence: 

 

 ui = ui-1
2 − 2 (8) 

 

Starting from a particular u0 (depending on k), it is a 
necessary and sufficient condition for p to be prime that 
p = k × 2n − 1 | un−2 . In practice, the sequence is computed 
modulo p, using large integer multiplication based on Discrete 
Weighted Transforms [33].  Efficient DWT computational 
kernels for x86-based CPUs have been developed by George 
Woltman [34], originally for use by GIMPS, and these have 
been incorporated into Jean Penné’s ‘LLR’ program [35], 
which is used for the majority of subprojects on PrimeGrid. 

For Proth numbers, we make use of Proth’s theorem that if: 

  

 a(p−1)/2 = −1 (mod p),   where (a
p ) = −1 (9) 

 

then p is prime.  Similarly to the LLR test, the repeated 
squaring of a is performed modulo p, and this algorithm is also 
implemented in the LLR program. 

In the case of Generalised Fermat Numbers, we have a very 
efficient implementation of Fermat’s Little Theorem in the 
Genefer program [36][37] that if p is prime, then 

 

 ap−1 = 1 (mod p),   1 ≤ a < p (10) 

 

Note that this is a necessary condition for p to be prime, but 
not sufficient – if the equality fails for a single value of a then p 
is composite.  We perform a test using a single value of a, and 
if the equality holds, we say p is probably prime (PRP) and 
then perform a subsequent deterministic test (for example an 
N−1 test, as described in [38]).  Because the fraction of primes 
is very small, this process is still very efficient, as very few 
deterministic primality tests are ever performed.  Of the over 
1000 GFN PRPs we have found to date, none have in fact 
turned out to be composite. 

Alongside LLR and Genefer, there are also many special-
purpose programs that we use, for example in the AP26, 
Wieferich and Wall-Sun-Sun subprojects, which we will not 
describe here. The most significant of these is OpenPFGW 
[39], which implements both deterministic and PRP tests for a 
very wide range of candidate forms, especially the b ≠ 2, 
Primorial and Factorial primes tested on PRPNet. 

C. PRPNet 
The majority of PrimeGrid’s work is done using BOINC as 

discussed in section III.  However, for some sub-projects we 
make use of PRPNet [40], a client/server system written by 
Mark Rodenkirch, specifically designed for prime searching.  
While not as fully-featured as BOINC, for example lacking a 
Graphical User Interface, PRPNet has the advantage that the 
code can easily be modified or extended to support testing with 
applications which cannot be easily integrated with BOINC.  
Thus it is used mainly for either the initial stage of searches 
that are then subsequently moved to BOINC, or for specialised 
projects which do not attract enough users to make it worth 
porting the application to BOINC.  Table 3 lists the currently 
active projects. 

TABLE III.  DETAILS OF CURRENT PRIMEGRID SUBPROJECTS RUNNING ON 
PRPNET 

Subproject Notes 
27/121 Search Proth and Riesel Primes for k=27 and 121 
Factorial Prime Search Primes of the form n! ± 1 
Generalised Cullen/Woodall 
Base 13 

Primes of the form n × bn ± 1, for b where 
no such prime is yet known 

Generalised Fermat Prime 
Search 

b2n
 + 1, for n=15,16,18,19 

Primorial Prime Search Primes of the form p# ± 1, where # denotes 
the ‘primorial’ product of all primes ≤ p 

Wieferich Prime Search Searching for a third Wieferich prime 
Wall-Sun-Sun Prime Search Searching for the first Wall-Sun-Sun prime 

V. CONCLUSION AND OUTLOOK 
Since it was founded in 2005, PrimeGrid has established itself 
as a major contributor to the field of computational number 
theory, driving software and methodological developments 
and breaking many records along the way.  However, perhaps 
the most significant achievement of the project has been to 
generate public engagement with Mathematics and build a 
large, active user community, whose contribution of computer 
time has enabled all of the results we have highlighted. 
 



As a result, we are well-placed to continue work on existing 
sub-projects and branch out into new areas, for example 
searching for new prime zeros of Ramanujan’s modular tau 
function [41].  We also welcome new collaborations with 
researchers in computational number theory with problems 
that could be addressed by Volunteer Computing. 
 
Against a background of declining interest in Volunteer 
Computing, PrimeGrid’s ongoing growth is a testament to the 
powerful appeal of finding large primes, and we are sure to 
continue this for the foreseeable future. 
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