EXTENDING THE GFN PRIME SEARCH BEYOND 1M DIGITS USING GPUS

PPAM 2013, Warsaw

Iain Bethune and Michael Goetz

Outline

- PrimeGrid
- Genefer: Background
- Genefer: New developments
- GFN prime search status
- Future plans

PrimeGrid

What is PrimeGrid?

- 'Volunteer Computing' project built on BOINC platform
- Searching for large primes (GFNs, Cullen, Woodall, Proth, Riesel, Twin Primes, Sophie Germain Primes ...)
- Working on computational proofs of Sierpiński, Riesel Conjectures (also the Prime and Extended variants)
- Set up in 2005 by Rytis Slatkevičius, now a team of volunteer admins and software developers
- 50,000+ users, largest BOINC project by total credit

PrimeGrid

- Range of applications
 - LLR (CPU only)
 - PFGW (CPU only)
 - PPSieve (CPU, CUDA, OpenCL)
- Portable to many clients

- Hardware:
 - Intel, AMD, PPC, ARM CPUs
 - Nvidia & AMD GPUs, Cell BE

Genefer: Background

 Program for (psuedo-)primality testing of Generalized Fermat Numbers

$$F_{b,n} = b^{2^n} + 1$$

- Implements a Fermat test
 - Essentially large-integer squaring (using DWT)
 - Modular reduction
 - Results in a 64-bit residue

$$a^{F_{b,n}-1} \equiv 1 \,(\operatorname{mod} F_{b,n})$$

- Original C-code written by Yves Gallot in 2002-2004
- Extended by Gallot and David Underbakke with handcoded assembly (MASM) transforms using:
 - x87 FPU 80-bit precision for extended range of b
 - x86-64 / SSE2 vector arithmetic for ~80% speedup

Genefer: New Developments

- Converted MASM to GNU syntax
 - Allowed builds for Mac OS X and Linux clients
- Integrated BOINC API calls into Genefer
 - Task start/stop/pre-empt, checkpoint, progress reporting
- Merged the (slightly diverged) versions into a single code
 - Uniform front-end: main algorithm, UI, checkpointing, benchmarks
 - Simple API implemented by each back-end
 - Build a particular version via pre-processor defines

Genefer: New Developments

- Support for Nvidia GPUs via CUDA back-end
 - FFTs using CuFFT library
 - Rounding and normalisation via four custom kernels
 - Initial port by Shoichiro Yamada, then optimised and auto-tuned
 - Entire calculation loop on GPU
 - Minimal data transfer
 - Initialisation
 - Infrequent check of max round-off error
 - Periodic checkpoints
 - CUDA is all encapsulated below the back-end API
- Code and binaries released: https://www.assembla.com/ spaces/genefer

Genefer: New Developments

	Genefe	r80	Genefer		Genefx64		GeneferCUDA	
2^n	b limit	t (ms)	b limit	t (ms)	b limit	t (ms)	b limit	t (ms)
32768	67,210,000	2.34	1,630,000	1.67	1,575,000	0.912	1,840,000	0.212
131072	$45,\!450,\!000$	11.2	$1,\!095,\!000$	7.54	1,060,000	4.05	$1,\!270,\!000$	0.601
524288	30,020,000	57.4	$695,\!000$	35.3	735,000	19.3	$815,\!000$	1.98
2097152	20,250,000	277	490,000	175	515,000	102	580,000	8.23
4194304	-	-	-	-	-	-	480,000	16.5

b limits and performance (ms per multiplication) for selected *n* on a Core 2 Quad 2.4 GHz with Nvidia GTX480.

GFN Prime Search Status

- Since 2009, we have extended the GFN search to higher b and started work on larger n
 - In the process discovered 12 new GFN mega-primes
 - 7 of these found using GeneferCUDA
 - No primes yet in n=20, n=22 searches although current search limits are at 10^{th} and 2^{nd} place on the top 5000 prime list.

n	b limit (Sep 2013)	Largest Prime	Date	Decimal digits
15	6,961,316	$15547296^{32768} + 1$	Jul 2011	$235,\!657$
16	$3,\!196,\!780$	$19502212^{65536} + 1$	Jan 2005	477,763
17	1,166,000	$1372930^{131072} + 1$	Sep 2003	804,474
18	1,024,466	$773620^{262144} + 1$	Feb 2012	1,528,413
19	750,244	$475856^{524288} + 1$	Aug 2012	$2,\!976,\!663$
20	$201,\!460$	-	-	-
22	$10,\!428$	-	-	_

GFN Prime Search Status

- Used our results to extend Gallot and Dubner's tables (Math. Comp. 71, 2002)
 - Good agreement with predicted distribution of primes except at n=18,19

	$b \le 10^5$			$b \le 10^6$			Search Limit			
2^n	Est.	Act.	Err.	Est.	Act.	Err.	b	Est.	Act.	Err.
8192	10	3	-2.2	81	74	-0.8	13,000,000	764	730	-1.2
16384	5	1	-1.7	38	33	-0.9	4,560,000	156	137	-1.5
32768	2	1	-0.5	14	16	0.6	6,961,000	84	91	0.8
65536	2	1	-0.5	13	14	0.2	3,196,000	35	38	0.5
131072	1	1	0.2	7	5	-0.6	1,166,000	8	7	-0.4
262144	0	2	2.2	4	7	1.5	1,024,000	4	7	1.5
524288	0	1	1.6	2	-	-	750,000	2	4	2.0
1048576	0	-	-	1	-	-	$201,\!460$	0	0	0.0
•				•						•
:				•			•			
4194304	0	-	-	0	-	_	$10,\!428$	0	0	0.0

Future Plans

- Already developed several new CPU transforms
 - SSE3, AVX, 128-bit software 'double-double' precision
- OpenCL implementation currently in beta
 - Targetted at AMD GPUs
 - Can be faster than CUDA for some *n* on some hardware
- Merge CPU back-ends into single executable
 - Auto-select transform based on hardware support and performance
 - Expose parameters for auto-tuning
- (Hopefully) find a new World Record Prime!

Summary

- PrimeGrid is a popular BOINC project with many primality testing sub-projects, including searching for large GFN primes
- We have ported the Genefer program to many architectures and OS, including Nvidia GPU using CUDA
 - 10x speedup over single CPU core for large *n*
- Large steps forward in search breadth and depth over previous GFN search effort

Closing in on a new world record prime

Acknowledgements

Rytis Slatkevičius

Lennart Vogel

John Blazek

Jim Breslin

Yves Gallot

David Underbakke

Mark Rodenkirch

NAISCentre for
Numerical Algorithms
& Intelligent Software

Thanks for listening

Any questions?

www.primegrid.com www.epcc.ed.ac.uk/~ibethune

