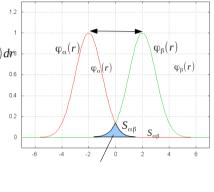



Supporting Advances in Atomistic Simulation Capability

Iain Bethune i.bethune@epcc.ed.ac.uk

"CP2K is a program to perform atomistic and molecular simulations of solid state, liquid, molecular, and biological systems. It provides a general framework for different methods such as e.g., density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW) and classical pair and many-body potentials."

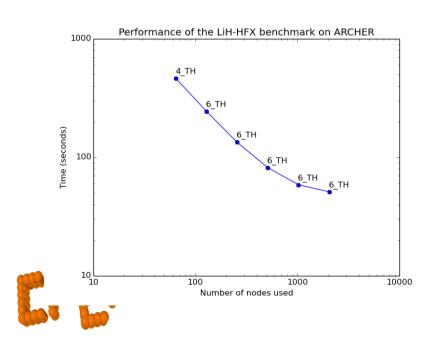


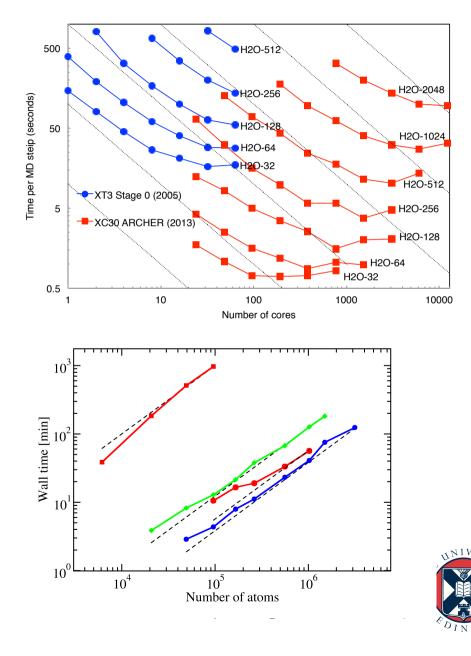
From <u>www.cp2k.org</u> (and original home page from 2004!)

- QUICKSTEP DFT: Gaussian and Plane Waves Method (VandeVondele *et al*, Comp. Phys. Comm_{δα}2005)_{φβ}(r)dr
 - Advantages of atom-centred basis $(\Pr_{\mathcal{H}_{ab}}^{H_{ab}} = \int_{\mathcal{H}_{ab}}^{\infty} (r_{ab} \gamma (r) \varphi_{b}(r) \varphi_{b}(r) dr$
 - Density, Overlap, KS matrices are sparse
 - Advantages of plane-wave basis (auxiliary)
 - Efficient computation of Hartree potential
 - Efficient mapping between basis sets
 - -> Construction of the KS Matrix is ~O(n)

- Orbital Transformation Method (VandeVondele & Hutter, J. Chem. Phys., 2003)
 - Replacement for traditional diagonalisation/density mixing(nonmetallic systems only)

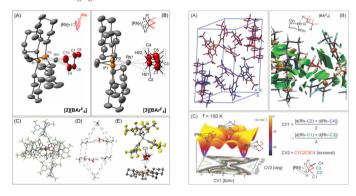
Cubic scaling but ~10% cost


- Many Hamiltonians:
 - Classical
 - DFT (GPW, GAPW + vDW)
 - LS-DFT
 - TD-DFT (LR and RT)
 - Hybrid Hartree-Fock
 - post-HF (MP2, RPA, G0W0)
 - Combinations (QM/MM, mixed)
- Simulation tools:
 - MD (various ensembles)
 - Monte Carlo, Global Optimisation
 - Minimisation (GEO/CELL_OPT)
 - Properties (Spectra, excitations ...)
- Open Source
 - GPL, <u>www.cp2k.org</u>
 - 1m loc, ~2 commits per day
 - ~20 core developers



- Efficient algorithms and scalable implementations:
 - Fast ab initio MD with local XC
 - 10,000s+ cores for single and double-hybrid DFT
 - MPI+OpenMP helps here
 - LS-DFT for millions of atoms

CP2K Applications

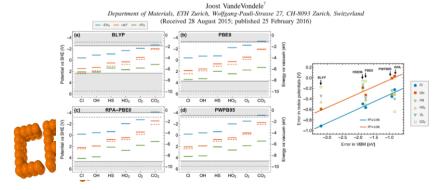

Alkane Complexes

International Edition: DOI: 10.1002/anie.201511269 German Edition: DOI: 10.1002/ange.201511269

> week ending 26 FEBRUARY 2016

A Rhodium–Pentane Sigma-Alkane Complex: Characterization in the Solid State by Experimental and Computational Techniques

F. Mark Chadwick⁺, Nicholas H. Rees, Andrew S. Weller,* Tobias Krämer⁺, Marcella Iannuzzi, and Stuart A. Macgregor*

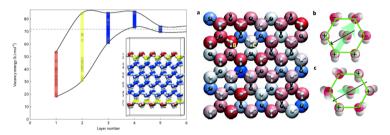


PRL 116, 086402 (2016)

PHYSICAL REVIEW LETTERS

Calculation of Electrochemical Energy Levels in Water Using the Random Phase Approximation and a Double Hybrid Functional

Jun Cheng^{*} Collaborative Innovation Center of Chemistry for Energy Materials, Stater Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China and Department of Chemistry, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

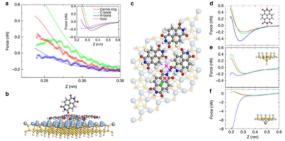

www.cp2k.org/science

Large variation of vacancy formation energies in the surface of crystalline ice

M. Watkins^{1,2,3}, D. Pan⁴, E. G. Wang⁵, A. Michaelides^{1,2,3}, J. VandeVondele⁶ and B. Slater^{1,3}*

¹Department of Chemistry, Christopher Ingold Building, 20 Gordon Street, University College London, London WCIH OAJ, UK, ²London Centre for Nanotechnology, University College London, London WCIH OAJ, UK, ³TYC@UCL, University, College London, London WCIH OAJ, UK, ⁴Institute of Physics, Chinese Academy of Sciences, PO Box 603, Beijing 100190, China, ⁵School of Physics, Peking University, Beijing 100871, China, ⁶Institute of Physical Chemistry, University of Zurich, Winterthurestrasses 190, CH-8057 Zurich, Switzerland, "e-mail: bolater@ucl.ac.wk.

NATURE MATERIALS | VOL 10 | OCTOBER 2011



ARTICLE

Received 6 Dec 2013 | Accepted 22 Apr 2014 | Published 30 May 2014 DOI: 10.1038/ncomms4931

Mapping the force field of a hydrogen-bonded assembly

A.M. Sweetman^{1,*}, S.P. Jarvis^{1,*}, Hongqian Sang^{2,3,*}, I. Lekkas¹, P. Rahe⁴, Yu Wang², Jianbo Wang², N.R. Champness⁵, L. Kantorovich³ & P. Moriarty¹

OPEN

CP2K Usage

- Growing popularity in UK community
 - 2nd most heavily used code on ARCHER
 - Growing users of CP2K on national service:
 - 42 (2Q14) -> 72 (1Q15) -> 116 (1Q16) -> 132 (4Q17)
 - EPSRC: Materials Chemistry Consortium, UKCP
 - NERC: Mineral Physics

• but...

- Large feature set leads to complexity
- Few default settings -> hard to set up systems from scratch
- Lack of documentation

Support for UK CP2K Users

CP2K-UK: EPSRC Software for the Future

- £500,000, 2013-2018
- EPCC, UCL (+ Lincoln), KCL
 - + 7 supporting groups

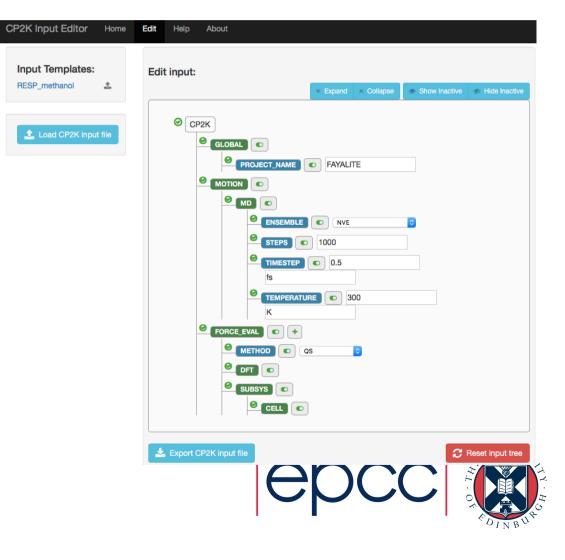
Pioneering research and skills

- Aims
 - Grow and develop existing CP2K community in UK
 - Lower barriers to usage and development of CP2K
 - Long-term sustainability of CP2K
 - Extend ability of CP2K to tackle challenging systems

Support for Users

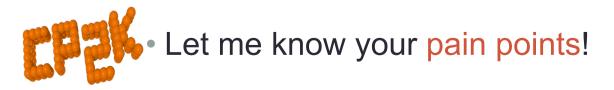
- Training Events
 - Annual User Group Meetings
 - Mon 9th January 2017 in Edinburgh
 - 14 days CP2K training during 2016
 - Collaborations with ARCHER, PRACE, MCC, UKCP & STFC
 - Visits to research groups (QUB)
 - CP2K Summer School
 - 23rd 26th Aug 2016 @ King's College London
 - Majority from UK people
 - Slides and exercises still available:
 - https://www.cp2k.org/events:2016_summer_school:index
 - All CP2K events at <u>www.cp2k.org/events</u>
 - Also notification by email

archer



Support for Users

- Tools & Usability
 - Feedback from tutorials:
 - building an input is hard!
 - CP2K input GUI
 - Validation of input
 CP2K releases 2.5 4.0
 - Keyword Selection
 - Show/hide sections
 - Job templates
 - Tooltip keyword help
 - Import and edit existing input files
 - Currently working on Chimera / tetr integration
 - System set-up and visualisation

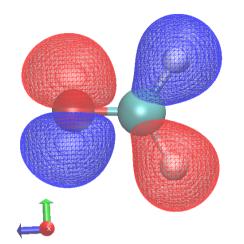


http://cp2k-www.epcc.ed.ac.uk/cp2k-input-editor

Support for Users

- Ad-hoc bespoke support
 - Help installing CP2K on your cluster
 - Iceberg @ Sheffield, Lancaster HEC, KCL Physics Cluster, QUB ...
 - Training days / group visits
 - Debugging
 - Adding functionality (e.g. OPLS torsions)
 - Advice on parallel performance <u>www.cp2k.org/performance</u>
 - We would like more than just Cray machines!
- Documentation
 - Growing set of 'HowTo' guides: <u>https://www.cp2k.org/howto</u>
 - FAQs: <u>https://www.cp2k.org/faq</u>

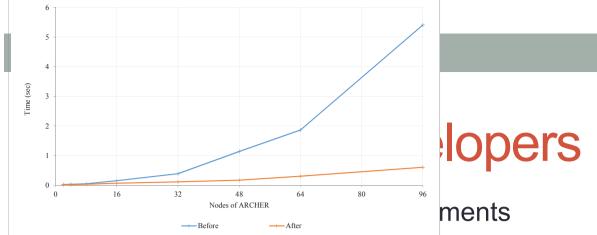
Support for Developers


- Development projects
 - 3 year PDRA developer post at KCL
 - Trailblazer for future (externally funded) projects
 - Langevin Dynamics regions (Kantorovich, 2008, Phys Rev B)
 - BSSE calculations with arbitrary fragments
 - Filter Matrix Diagonalization (Rayson & Briddon, 2009, Phys Rev B)
 - REPEAT charge fitting (Campana et al, 2008, JCTC)
 - CP2K Installer
 - Vibrational Initialisation for MD (West & Estreicher, 2006, PRL)

Support for Developers

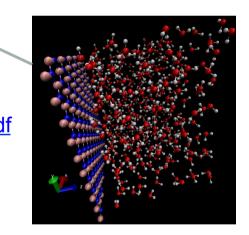
- External funding
 - Three 12 month funded projects from ARCHER eCSE

- LR-TDDFT with Hybrid Functionals/ADMM
 - Dec 2015 Dec 2016 : Sergey Chulkov / Matt Watkins @ Lincoln
 - Maximum Overlap Method
 - MO visualisation output in Molden format
 - See


https://www.archer.ac.uk/training/virtual/2016-11-23-CP2K-Improvements/ TDDFT.slides.html

- Electron Transport based on Non-Equilibrium Green's Functions Methods
 - Dec 2016-Dec 2017

Sergey / Matt @ Lincoln, Lev Kantorovich @ KCL, Artem Fediai @ TU
 Dresden




- Started Dec 2015 Mark Tucker @ EPCC
- Large, load imbalanced systems (~10% speedup, GBs memory saving)
- GAPW (3.6x speedup!)
- vDW-corrected XC functionals (~5% speedup)
- K-points
- See <u>https://www.archer.ac.uk/training/virtual/</u> 2016-11-23-CP2K-Improvements/CP2K-virtual-tutorial.pdf

Nodes of ARCHER	45	48	64	96
Original Code	1427	1176	1371	1278
Modified Algorithm	1312	1057	1241	1168
Improvement	8.8%	11.3%	10.5%	9.4%

Table 2: Overall Run Time (seconds).

- Charged cluster of 216 water molecules in 34Å³ box
- TZV2P MOLOPT basis set
- PBC off
- ~10% speedup

Community Involvement

- Interested in contributing to development?
 - Opportunity to get 6-12 months funding via ARCHER eCSE calls (next 31st Jan & 9th May 2017) for *"Improvements to code which allows new science* to be carried out"
 - Have a 'killer feature' that you *need* in CP2K?
 - Interested in working on a development project? Let me know...
- Acknowledge support from CP2K-UK grant (EP/K038583/1) in publications (and tell me!)
 - More impact = better chance of future funding
 - Cite CP2K reference papers (check your output!)
- Letters of support available to projects who will use/develop CP2K

Summary

- CP2K is a powerful tool for materials modeling using DFT
 - + a wide range of other Hamiltonians
- Well suited to use on HPC and cluster systems
- Support for users and developers available through EPSRC-funded CP2K-UK project
- Support requests to <u>i.bethune@epcc.ed.ac.uk</u>

