
Automated regression testing and code
coverage analysis of the CP2K application

Testing the
big super-
computing
Hydra
Marko Mišić

Developing a large scale, parallel application is a very demanding task, especially if

you want your application to run on a wide range of architectures. In order to do so,

you need a decent testing environment to bolster your chances of getting everything

to work right.

ou have probably heard the
story of St. George and the
Dragon. According to leg-
end, the Dragon caused

many problems for the ancient city
of Lasia, somewhere in the Middle
East. Dragons are mighty, fire-
breathing creatures, but even in
those auld times, there were brave
men like St. George who slayed the
Dragon, saved the city, and became
a legend.
In modern days we do not believe in
those mythical creatures, but rather
use them as a metaphor of some-
thing really huge and powerful.
Nowadays, supercomputers are
somehow like dragons – they are
mighty and powerful, consuming
vast amounts of energy and produc-
ing heat, but still vulnerable due to
the errors in software. Like the
dragon Smaug from J. R. R.
Tolkien's ‘The Hobbit’ who had a
weak spot, an ‘Achilles' heel’ in his
armour that eventually led to his
defeat.
Supercomputers will not disappear,
that is certain, but rather continue
to evolve, leading to diversity in
High Performance Computing eco-
system, and thus posing problems to

application developers. Instead of
dealing with one sort of “supercom-
puting beast”, they have to deal with
many in order to run their applica-
tion on different platforms.
Figuratively speaking, it makes
more sense to think of a parallel,
large scale application as the dragon
with more than one head, or, if you
like, as more powerful mythical
creature – the Lernaean Hydra. As
you remember, Hydra had many
heads – just like the supercomput-
ers developers use to build, test and
execute their parallel applications. It
is one of the reasons why testing of
large scale applications is becoming
increasingly important.

Instead of introduction

Before going into details of the test-
ing process, it is worth becoming
familiar with the application itself.
At least, it is good to know some-
thing about its scale in order to be
aware of the potential caveats.
CP2K is complex scientific applica-
tion to perform atomistic and mo-
lecular simulations of solid state,
liquid, molecular, and biological
systems. It provides a general

framework for different methods
including force fields, and ab initio
models like Density Functional
Theory, Hybrid DFT-Hartree-Fock,
and post-HF methods. CP2K is
freely available under GPL licence
on its website [1].
The application itself is written in
Fortran 95 with the support for both
serial and parallel execution. It can
be executed on a wide range of ar-
chitectures using different parallel
programming models like Message
Passing Interface (MPI), OpenMP
for threading, and a hybrid of the
two. Key computational parts of the
application are implemented for
GPU execution using NVIDIA Com-
pute Device Unified Architecture
(CUDA), and there is an ongoing
research effort to port the applica-
tion to new Intel Xeon Phi platform.
If you look even closer at the CP2K
code, you will see that it has a really
large code base, consisting of more
than 900,000 lines of code. The
code is supplied with a suite of
around 2,400 example input files
which can be run as a regression test
of the code’s functionality, both for
the benefit of developers and for
users building the application for

Y

the first time on a new system. So
you see that the application is really
heterogeneous, as well as the hard-
ware on which it can be executed.
Furthermore, differences exist be-
tween compilers for the same lan-
guage, making the whole thing even
more complex.

Regression testing at a glance

Traditionally, regression testing can
be described as a verification proc-
ess after changes like enhance-
ments, patches or configuration
changes have been made to the sys-
tem. Essentially, the role of regres-
sion testing is to ensure that no new
faults or bugs have been introduced
with new versions of the code, and
to make sure that changes in one
part of the code do not affect other
parts. The CP2K community of de-
velopers is active daily, making on
average two commits to the code
base per day in the last 12 months,
thus making the need for extensive
regression testing of the code even
more important.
CP2K regression testing is done
with a suite of around 2,400 exam-
ple input files executed by a Linux
bash script solely written for that
purpose. The script checks the code
for build errors and correctness,
reporting any wrong results, run-
time failures or memory leaks.
During the process, the regression
testing script updates the code to
the latest version submitted to SVN
repository, and then compiles it. If
build process goes fine, the script
executes tests one by one, and
checks each result obtained against
a known good value.
Although nicely written, the whole
process did not follow rapid devel-
opment of the application itself over
the years. CVS version control sys-
tem was replaced with SVN in 2011.
CP2K was ported to new platforms.
The developers realized that there
was no way to execute only failed
tests, and generally it missed new
options to support growing code
base. For example, due to the nature
of floating-point calculations in
multithreaded environments, you
can get results that slightly vary
from the reference ones. Those re-
sults are not erroneous, so regres-
sion testing needed a way to tolerate
all those that fail by less than a
specified (small) margin.

Automation is the right way

In software development, especially
in agile development methodolo-
gies, it is considered good practice
to check your code for bugs regu-
larly. Ideally, you would like to
check your code after every commit
to SVN repository, so that you can
catch potential bugs after any
change in the code.
Regular, automated regression test-
ing was done for CP2K only at one
site in Switzerland. Furthermore,
the testing was done only for the
MPI implementation with two proc-
esses and the g95 compiler which is
a bit outdated. This configuration
clearly tested only a subset of
CP2K’s functionality, which we
proved to be true by running code
coverage analysis. That analysis
showed that only about half of the
code is included in MPI version,
thus leaving some old and new fea-
tures, like OpenMP and CUDA code,
out of reach. Also, the code was not
tested with any other compiler, so it
posed problems during the porting
of the application to Intel Xeon Phi,
which uses only Intel compilers, just
to give an example.

Panacea to our ills

In order to improve the testing of
CP2K code, we decided to make
automated regression testing more
comprehensive and robust. We
wanted to set it up for a range of
architectures and compilers, includ-
ing different serial and parallel ver-
sions - MPI, OpenMP, CUDA, hy-
brid, etc. There was also a need to
include more compilers, so that
tester can catch a wider range of
build errors.

Also, quality of testing can be meas-
ured by actual percentage of code
being tested and exercised during
the testing process. That is why we
wanted to analyze the CP2K code
with code coverage tools, to actually
see how well the tests cover the
code. And in the end, we needed to
present all the information gathered
through regression testing process
in clear and obvious way.
To do all of that, the existing regres-
sion test environment needed a
major facelift - the first for several
years. The legacy automated regres-
sion tester needed to be completely
rewritten, and to cover all those
different platforms we needed a way
to do it easily.

A long road to automated testing

Setting up automated regression
testing is not an easy task as it might
look at the first sight. Although
there are external tools like Jenkins,
BuildBot or Hudson that might help
you with that task, they are mostly
used in complex application soft-
ware developments that follow ex-
treme programming methodologies.
We needed a simpler, yet efficient
way, to support execution of CP2K
on remote hosts (supercomputers),
while processing the results on a
local web server and showing them
to the world.
To achieve this, we developed a new
set of bash scripts, configuration
files, and HTML templates. The core
of the tester consists of two layers in
two separate scripts. The outer layer
is responsible for processing and
presentation of the results, and it
constantly monitors for changes in
the code repository. Once the code
has changed, it invokes inner layer
which takes care of the regression

Figure 1: Automated regression tester front page

testing using the main regression
testing script and a set of configura-
tion files for each particular system.
The two layers communicate only at
strictly defined points through
command line options and files that
contain the results.
This architecture supports both
local and remote testing, as two
layers do not have to execute on the
same machine. With minimal, local-
ized configuration changes, it is
possible to execute the inner layer
on a remote system, while keeping
outer layer on a local web server.
Supercomputers usually cannot act
as web servers, so this was a feasible
solution to aggregate and process
results in one place, while having
the flexibility to test CP2K applica-
tion on different system.
The whole system is easy to set up
and configure, since all changes are
localized in configuration files. A
helper script is written to aggregate
all the results in one page that is
shown in Figure 1. There you can
see information about the code
status for the most recent code revi-
sion for each tested configuration. A
more detailed view for every par-
ticular regression test environment
is available in a separate page. There
you can find the history of the tester
(Figure 2), the last ten regression
testing reports and more. Also,
there is a section on the website
containing information about code
coverage which is generated by the
very handy LCOV tool.

Lessons learned

Many problems have been encoun-
tered during the work of this pro-

ject. First of all, it is not easy to im-
prove legacy code while maintaining
the backward compatibility. We
found that problem while working
both with main regression testing
script and automated regression
tester.
Second, deploying a large scale ap-
plication to different systems can be
really hard. Those applications rely
heavily upon third-party libraries,
and they are usually sensitive to
different compilers or even different
versions of the same compiler. This
is especially important for those
supercomputing systems that are
heterogeneous and consist of differ-
ent backend nodes, as software
stack might not be unified across all
the nodes. At some point, you might
end up with code able to compile
and execute on one node, but not
the one you need or have access to!
In the end, remote execution of jobs
is always tricky as more levels of
indirection you have, the more you
are prone to errors if you are not
familiar with the remote system.
Since supercomputers are usually
very different “creatures”, you have
to cope not only with different oper-
ating system installed, but also with
different job submission (batch)
systems.

Instead of conclusion

At this point, we can say that our
project achieved its most important
aim – to provide the developers of
CP2K with comprehensive testing
and information about their code
status. The automated regression
tester has been deployed to five new
platforms and it aggregates results

from six platforms in total, and also
provides code coverage data.
Of course, a testing system like one
we implemented should constantly
be improved to keep the pace with
ongoing application development.
Future work will surely include a
more detailed analysis of code cov-
erage information, and should cover
more platforms, with Intel and Cray
compilers especially in mind.
In the end, we can say that we
tamed our supercomputing Hydra.
But, beware that if you do not keep
pace with your application, your
Hydra may have grown new heads
next time you wake up.

PRACE SoHPCProject Title

Multi-platform parallel code coverage and
regression testing with CP2K

PRACE SoHPCSite

Edinburgh Parallel Computing Centre, UK

PRACE SoHPCAuthor

Marko, Mišić,
University of Belgrade,
School of Electrical
Engineering, Serbia

PRACE SoHPCMentor

Iain Bethune,
Edinburgh Parallel Computing Centre, UK

PRACE SoHPCContact

Marko, Mišić, University of Belgrade,
School of Electrical Engineering, Serbia

Phone: +381 64 294 86 55

E-mail: marko.misic@etf.bg.ac.rs

PRACE SoHPCSoftware Applied

CP2K

PRACE SoHPCMore Information

http://cp2k-www.epcc.ed.ac.uk/

PRACE SoHPCAcknowledgement

Many thanks to Iain Bethune, Ruyman Reyes, Nick
Brown, Fiona Reid, Mark Bull, David Henty, and
Irina Nazarova from EPCC who helped me during
the realization of this project.

PRACE SoHPCReferences

[1] CP2K, Open Source Molecular Dynamics,

http://www.cp2k.org/

[2] CP2K automated regression tester,

http://cp2k-www.epcc.ed.ac.uk/

Figure 2: A detailed view of particular regression tester

mailto:marko.misic@etf.bg.ac.rs
http://cp2k-www.epcc.ed.ac.uk/
http://www.cp2k.org/
http://cp2k-www.epcc.ed.ac.uk/

