
MIST: Molecular Integration Simulation Toolkit
Iain Bethune1*, Elena Breitmoser1, Gianpaolo Gobbo2, Charles Matthews2 and Ben Leimkuhler2

*ibethune@epcc.ed.ac.uk 1EPCC, University of Edinburgh 2School of Mathematics, University of Edinburgh

MIST Library Architecture
MIST is a C++ library, and provides two key abstractions, each implemented as an
abstract class:

● The System consists of a set of particles, with various properties: position,
velocity, mass, force on the particle, and species. A simple API is provided to get
and set the properties of each particle. In addition, accessors are provided for
global quantities such as the potential energy, and a single function call updates
the forces on the particles given the current state of the system. Subclasses are
provided for each supported MD code, which implement the System API using the
data structures present in that code.

● An Integrator provides only a single method, which integrates the system from
time t to t+dt. Integrators are implemented using only the System API,
completely independent of any particular MD code. Several examples are
provided, including a Verlet integrator, 4th and 8th order Yoshida symplectic
integrators, Langevin dynamics using the BAOAB scheme [1], and a Continuous
Tempering integrator [2].

Figure 1: MIST Library Architecture.

Overview
One of the current Grand Challenge problems in Biochemistry is being able to
understand the properties of complex macromolecular systems by effective
sampling of their conformational space using Molecular Dynamics. Brute-force
sampling using very long MD runs is inadequate since even with optimised
software and specialised parallel hardware (e.g Anton, MDGRAPE) it is only
possible to sample up to milliseconds of dynamics. This may not be enough to
observe transitions which occur on biological timescales, and certainly is not
enough to obtain robust statistics. Several well-known approaches exist to enable
MD simulations to escape from local energy minima and explore the phase space
of a system such as metadynamics, parallel tempering, steered MD and replica
exchange. However, these methods have limitations such as the inability to recover
an equilibrium (Boltzmann-weighted) sampling of the space, or require a priori
knowledge of a system, such as suitable collective variables to distinguish the
important conformations of a system.

The NSF / EPSRC [EP/K039512/1] funded ExTASY project (Extensible Tools for
Advanced Sampling and analYsis) proposed a three-pronged solution to this
challenge – coupling together the effcient execution of large ensembles of
independent or loosely coupled MD trajectories, advanced analysis tools to
effciently sample the entire phase space, and the use of novel integration methods
that allow extremely long time steps and biased sampling using collective
variables.

The topic of this poster, the Molecular Integration Simulation Toolkit (MIST),
addresses third aspect of the ExTASY approach to sampling. In order for new
integration algorithms to be widely adopted by the biomolecular simulation
community, their effectiveness must be demonstrated on systems of biological
relevance. Typically, integrator development is carried out within simplifed MD
codes, which lack the effcient force evaluation and parallelisation approaches
available in 'production' MD codes such as GROMACS, NAMD and LAMMPS,
which have large existing user bases. The excellent performance and scalability of
these codes comes at a cost of software complexity, and thus there is a barrier to
the implementation of new algorithms, their testing at scale, and their eventual
adoption by the wider user community.

MIST overcomes this barrier by providing two things - a simple API for integrator
developers which hides the complexities of real MD codes, enabling rapid
development of new integration algorithms at a higher level of abstraction; and a
plug-in interface, enabling the new integrators to be deployed directly in several
MD codes, taking advantage of their highly effcient force evaluation code, fle
format support, and supporting tool chains.

MIST also provides a C API to
enable integration with 'host'
MD codes. MIST API calls are
inserted in place of the usual
MD step via source-code
patches, which are provided
with MIST and applied during
the build process.

To use MIST requires setting a
single confguration fag in the
host MD code, then further
confguration of MIST is via a

separate mist.params fle, for example selecting an integrator and setting any
additional integrator parameters. All confguration of the force-feld, simulation
parameters and I/O is done as normal in the MD code's input fles.

Performance
The MIST library is designed to provide a high-level abstraction of an MD code, to
enable rapid development of new integrators. However, this should not have a
signifcant effect on application performance.

To measure the impact of using MIST, we simulated a 50Å3 box of water molecules
using a fexible TIP3P model from the CHARMM forcefeld for a total of over
11,000 atoms. Verlet integration and an NVE ensemble with a time step of 1 fs,
were used. The input fles for this system can be found in the examples directory
of the MIST distribution. Both NAMD-Lite version 2.0.3 and Gromacs version
5.0.2 were tested, in three confgurations:

Download MIST
MIST is freely available (BSD License) from :

http://www.extasy-project.org/mist
The following features are available in the MIST 1.0 release:

● Plug-ins for GROMACS and NAMD-Lite (OpenMP parallelism only)
● Verlet, Yoshida (4th / 8th order), Langevin, Continuous Tempering Integrators
● Access to individual components of the potential energy / per-particle forces

In the next version of MIST (mid-2015), we plan to include the following:

● Plug-in for AMBER
● MPI parallel execution
● Support for constraints (SHAKE, SETTLE …)

Please download and experiment with the code - we
welcome feedback, contributions and suggestions!

[1] B. Leimkuhler and C. Matthews. (2012) “Rational Construction of Stochastic
Numerical Methods for Molecular Sampling,” Applied Mathematics Research
Express, Vol. 2012

[2] See poster by G. Gobbo and B. Leimkuhler

● NO_MIST: Code built normally without MIST library
● MIST_OFF: Code linked with MIST library, using native Verlet integrator
● MIST_ON: Code linked with MIST library, using MIST Verlet integrator

Figure 2: Performance of NAMD-Lite with/without MIST Figure 3: GROMACS scaling with/without MIST

NAMD-Lite performance tests were carried out on a MacBook Pro with a quad-
core Intel Haswell 2 GHz processor. As shown in Figure 2, linking with MIST has
negligible impact on the performance of NAMD-Lite. Indeed, the MIST Verlet
integrator appears to be around 2% more effcient than the native implementation
in NAMD-Lite. GROMACS was tested on ARCHER, a Cray XC30 with 2 12-core
Intel Ivy Bridge 2.7 GHz processors per node. Figure 3 demonstrates that MIST
can make use of OpenMP threading to increase performance, but there is currently
a signifcant overhead of about 2.5 times due to the use of MIST for the integration
step. Nevertheless, GROMACS is still over 100 times faster than NAMD-Lite, due
to its highly optimised force evaluation implementation, so can be used for
production-scale simulations in combination with MIST.

	Slide 1

