
Iain Bethune
EPCC

ibethune@epcc.ed.ac.uk

Mixed-mode
Parallelism in CP2K:

A Case Study

DEISA/PRACE Spring School

31/03/2011

CP2K: Contents

•  CP2K Overview

•  OpenMP Strategy

•  Fast Fourier Transforms

•  Collocate and Integrate

•  Miscellaneous Gotchas

•  Performance Results

•  Summary

Mixed Mode Parallelism in CP2K: A Case Study 2

Mixed Mode Parallelism in CP2K: A Case Study 3

CP2K: Overview

•  CP2K is a freely available (GPL) Density Functional Theory
code (+ support for classical, empirical potentials) – can
perform MD, MC, geometry optimisation, normal mode
calculations…

•  The “Swiss Army Knife of
Molecular
Simulation” (VandeVondele)

•  c.f. CASTEP, VASP, CPMD
etc.

Mixed Mode Parallelism in CP2K: A Case Study 4

CP2K: Overview

•  CP2K is a freely available (GPL) Density Functional Theory
code (+ support for classical, empirical potentials) – can
perform MD, MC, geometry optimisation, normal mode
calculations…

•  The “Swiss Army Knife of
Molecular
Simulation” (VandeVondele)

•  c.f. CASTEP, VASP, CPMD
etc.

CP2K: Overview

•  Over 600,000 lines of FORTRAN 90/95

•  Efficient MPI parallelisation – scales to 1,000s of tasks for
large enough systems.

•  Some existing OpenMP directives, but not kept up to date

•  Actively developed by ~10 members of distributed
development team (Uni. Zurich, ETH, EPCC, and more…)

Mixed Mode Parallelism in CP2K: A Case Study 5

CP2K: Overview

•  Employs a dual-basis (GPW) method to calculate energies,
forces, K-S Matrix in linear time
–  N.B. linear scaling in number of atoms, not processors!

•  As a result, there are various (complicated) data structures
and algorithms in the code:
–  Regular grids (1D, 2D, 3D domain decomposed)
–  Sparse Matrices
–  Dense Matrices
–  Distributed task lists

Mixed Mode Parallelism in CP2K: A Case Study 6

CP2K: OpenMP Strategy

•  Work reported here done under
–  HECToR dCSE Project “Improving the scalability of CP2K on multi-core

systems” (50% FTE) Sep 09 – Aug 10

•  Use OpenMP to parallelise only areas of the code which consume
the most CPU time (Amdahl’s law)
–  Setting up a parallel region is relatively cheap, allowing micro-parallel regions
–  Can see this via CrayPat (omp-rtl trace group) in final lab session

•  MPI Communication takes place on a single thread outside the
parallel regions

Mixed Mode Parallelism in CP2K: A Case Study 7

CP2K: OpenMP Strategy

•  Expect improved performance for the following reasons:

–  Reduce impact of algorithms which scale poorly with number of MPI tasks
–  E.g. When using T threads, switchover point from 1D decomposed FFT

(more efficient) to 2D decomposed FFT (less efficient) is increased by a
factor of T

–  Improved load balancing
–  Existing MPI load balancing algorithms do a coarser load balance, fine-

grained balance done over OpenMP threads

–  Reduced number of messages significantly
–  Especially on pre-Gemini networks
–  For all-to-all communications, message count reduced by factor ofT2

Mixed Mode Parallelism in CP2K: A Case Study 8

Mixed Mode Parallelism in CP2K: A Case Study 9

CP2K: OpenMP Strategy

•  Further motivations:
–  extremely scalable Hartree-

Fock Exchange (HFX) code
uses OpenMP to access
more memory per task, and
is limited to 32,000 cores by
non-HFX part of the code

–  HPC architectures (e.g. Cray
XT/XE going increasingly
multi-core -> map well to
architecture by using
OpenMP on node, MPI
between nodes

CP2K: Functional Evaluation

•  One of the key routines in the code – evaluate a functional
(and derivatives) over the electronic density:

Mixed Mode Parallelism in CP2K: A Case Study 10

CALL pbe_lda_calc(rho=rho, ..., e_rho=e_rho, ...)!
!
...!
!
SUBROUTINE pbe_lda_calc(rho, ..., e_rho, ...)!
!
...!
!
 DO ii=1,npoints!
 my_rho = rho(ii)!
 ...!
 t6 = 0.1e1_dp / my_rho!
 t7 = t5 * t6!
 ...!
 e_rho(ii) = e_rho(ii)+&!
 scale_ex * (ex_unif * Fx + t208 * Fx + t108 * Fxrho) + &!
 scale_ec * (epsilon_cGGA + my_rho * epsilon_cGGArho)!
 ...!
 END DO!
...!
END SUBROUTINE!
!

•  npoints is large (>1000), iterations are independent, and all
cost the same -> easy to parallelise

CP2K: Functional Evaluation

Mixed Mode Parallelism in CP2K: A Case Study 11

!$omp parallel default(none), &!
!$omp shared(rho,...,e_rho,...) !
CALL pbe_lda_calc(rho=rho, ..., e_rho=e_rho, ...)!
!$omp end parallel!
!
...!
!
SUBROUTINE pbe_lda_calc(rho, ..., e_rho, ...)!
!
...!
!
!$omp do!
 DO ii=1,npoints!
 my_rho = rho(ii)!
 ...!
 t6 = 0.1e1_dp / my_rho!
 t7 = t5 * t6!
 ...!
 e_rho(ii) = e_rho(ii)+&!
 scale_ex * (ex_unif * Fx + t208 * Fx + t108 * Fxrho) + &!
 scale_ec * (epsilon_cGGA + my_rho * epsilon_cGGArho)!
 ...!
 END DO!
!$omp end do!
...!
END SUBROUTINE!
!

CP2K: Functional Evaluation

•  Key points:

–  default(none) is good practice, but verbose. Compiler will force you to
think about the sharing (or not) of all variables

–  Place parallel region outside function call to avoid specifying all the
100s of local variables, which are made private by default

–  The default schedule for the loop is a static schedule – each thread
gets npoints/nthreads consecutive iterations

Mixed Mode Parallelism in CP2K: A Case Study 12

CP2K: Functional Evaluation

•  Result

Mixed Mode Parallelism in CP2K: A Case Study 13

Threads 1 2 3 4 6 12 24
pbe lda eval 7.98 4.05 2.73 2.08 1.42 0.75 0.45
Speedup 1 1.97 2.92 3.84 5.62 10.64 17.73

Table 3: Times (in seconds) and speedup for PBE evaluation on HECToR Phase 2b

2.4 Functional Evaluation

One subroutine that was not initially planned to be parallelised, but began to show up in
the CP2K timing report as other areas of the code were parallelised was the evaluation
of the correlation functional. In this case, only the PBE functional [9] was parallelised,
but the method should generalise to the other implemented functionals easily if required.

The bulk of the functional evaluation is done as a single loop over the points on the
real-space density grids. At each point, the (complicated) calculation of the the func-
tional is performed, and the result written onto a corresponding point on the derivative
grids. This loop is trivially parallel since each iteration is entirely independent, so we
see very good OpenMP efficiency (93% efficiency with 6 threads, and 74% using all 24
cores on the node), as shown in table 3.

14

•  93% efficiency with 6 threads, 74% with 24 threads

Mixed Mode Parallelism in CP2K: A Case Study 14

CP2K: Fast Fourier Transforms

•  CP2K uses a 3D Fourier Transform to turn real data on
the plane wave grids into g-space data on the plane wave
grids.

•  The grids may be distributed as planes, or rays (pencils) –
so the FFT may involve one or two transpose steps
between the 3 1D FFT operations

•  The 1D FFTs are performed via an interface which
supports many libraries e.g. FFTW 2/3 ESSL, ACML,
CUDA, FFTSG (in-built)

Mixed Mode Parallelism in CP2K: A Case Study 15

CP2K: Fast Fourier Transforms

•  We can parallelise two parts with OpenMP

•  1D FFT – assign each thread a subset of rows to FFT

•  Buffer packing – threads cooperatively pack the buffers
which are passed to MPI

•  Communication still handled outside a the parallel regions

Mixed Mode Parallelism in CP2K: A Case Study 16

CP2K: Fast Fourier Transforms

•  Typically we have M 1D FFTs of length N to perform

M=~N/P in 1D or ~N/sqrt(P) in 2D)

N
=~

10
0-

20
0

Thread 0 Thread 1 Thread 2 Thread 3

•  Ask FFTW to plan M/T FFTs of length N, each thread
executes the plan starting at a different offset in the array

Mixed Mode Parallelism in CP2K: A Case Study 17

CP2K: Fast Fourier Transforms

•  Some care needed:

–  If T does not divide M, we need to have two different plans, so
some threads will do slightly more FFTs than others

–  Must ensure each thread’s first element is 16-byte aligned to
FFTW can safely use SSE instructions (~2x speedup). The only
case this affects is if N is odd and we are using single-precision
values (each element is complex number so 8 bytes). In this case
we always divide up on pairs of FFTs to ensure alignment is
retained.

Mixed Mode Parallelism in CP2K: A Case Study 18

CP2K: Fast Fourier Transforms

•  Buffer (un)packing:

CALL mp_alltoall (cin, scount, sdispl, rbuf, rcount, rdispl, sub_group)!
!
!$omp parallel do default(none) __COLLAPSE2 &!
!$omp private(ip,ipl,nz,iz,is,ir) &!
!$omp shared(nx,ny,np,pgrid,boin,sout,rbuf)!
 DO ixy = 1, nx * ny!
 DO ip = 0, np - 1!
 ipl = pgrid (ip, 2)!
 nz = boin (2, 3, ipl) - boin (1, 3, ipl) + 1!
 DO iz = 1, nz!
 is = boin (1, 3, ipl) + iz - 1!
 ir = iz + nz * (ixy - 1)!
 sout (is, ixy) = rbuf (ir, ip)!
 END DO!
 END DO!
 END DO!
!$omp end parallel do!
!

Mixed Mode Parallelism in CP2K: A Case Study 19

CP2K: Fast Fourier Transforms

•  Key points:
–  Outer loop over points (X*Y), inner loop over processors, for small P,

there are many iterations in the outer loop, for large P, there may be
less than T iterations in the outer loop.

–  OpenMP 3.0 provides the collapse clause that merges the loop nest
and parallelises over the entire iteration space, so we will always
have enough iterations to make good use of all threads.

–  For pre-3.0 compilers (e.g. Pathscale), we can define out the collapse
clause:

#if defined(__HAS_NO_OMP_3)!
#define __COLLAPSE2!
#else!
#define __COLLAPSE2 collapse(2)!
#endif!

Mixed Mode Parallelism in CP2K: A Case Study 20

CP2K: Fast Fourier Transforms

FFT Performance on HECToR (Phase 2a)

10

100

1000

10 100 1000 10000

Cores

P
e

rf
 (

1
/t

im
e

)

MPI

2 threads

4 threads

Linear

Mixed Mode Parallelism in CP2K: A Case Study 21

CP2K: Fast Fourier Transforms

FFT Performance on Rosa

10

100

1000

10 100 1000 10000

Cores

P
e

rf
 (

1
/t

im
e

)

MPI

2 threads

6 threads

12 threads

Linear

Mixed Mode Parallelism in CP2K: A Case Study 22

CP2K: Collocate and Integrate

•  Another computationally expensive step is mapping between
a sparse matrix representation of the electron density
(coefficients of 3D Gaussian basis functions) and the real-
space grids, prior to FFT.

•  Original implementation looped over a task list, and for each
task, read some elements from the matrix, evaluated the
function, and summed data onto the grids (Collocation)

•  In reverse (Integration), for each task, a region of the grid is
read, and part of the matrix is updated with the new values.

Mixed Mode Parallelism in CP2K: A Case Study 23

CP2K: Collocate and Integrate

•  But:
–  Basis functions may overlap, so we need to ensure threads don’t

update the same area of the grids simultaneously (race condition)
–  Matrix library (DBCSR) requires that only a single thread update a

single block of the matrix between ‘finalization’ calls (expensive)
–  We in fact have multiple grid levels (typically 4-6, coarse to fine), and

the task list is ordered such that all tasks for a given grid level are
consecutive, so that the grids (several MB) are retained in cache – we
need to preserve this

•  Solution:
–  Preprocess the task list and split it by grid level, and by atom pair

(corresponding to individual matrix blocks)

Mixed Mode Parallelism in CP2K: A Case Study 24

CP2K: Collocate and Integrate

DO ipair = 1, SIZE(task_list}!
 <process each task>!
END DO!

!$omp parallel!
DO ilevel = 1, ngrid_levels!
 !$omp do!
 DO ipair = 1, task_list%npairs(ilevel)!
 DO itask = task_list%taskstart(ilevel,ipair), task_list%taskstop(ilevel,ipair)!
 <process each task>!
 END DO!
 END DO!
 !$omp end do!
END DO!
!$omp end parallel!

Becomes…

Integrate is now easy, just need to finalize the matrix at the
end of each grid level loop

Mixed Mode Parallelism in CP2K: A Case Study 25

CP2K: Collocate and Integrate

•  Collocate is more tricky…
–  Tried using OpenMP locks to protect updates to regions of the

grid, but hard to be granular enough to avoid contention, and
have low overhead setting up & destroying the locks

–  Eventually settled on giving each thread a thread-local copy of the
grid, and then performing a manual reduction step after each grid
level is completed.

–  There are various possible ways of doing the reduction, currently
using a method where each thread sums its local grid into the
shared grid a section at time.

Mixed Mode Parallelism in CP2K: A Case Study 26

CP2K: Collocate and Integrate

Thread 0

Thread 1

Thread N-1

rs grid lgrids

Thread 0

Thread N-2

Thread N-1

Thread 0

Thread 1

Thread 2

1

2

N

Threads 1 2 3 4 6 12 24
Collocate
Speedup

1 1.9 2.9 3.7 5.5 8.2 10.4

Integrate
Speedup

1 1.8 2.6 3.2 3.9 2.7 1

Mixed Mode Parallelism in CP2K: A Case Study 27

CP2K: Miscellaneous Gotchas

•  How much should you trust your compiler?
–  In several places we have large array operations (zeroing,

summation) that we would like to parallelise. Should be as simple
as:

Real(kind=dp), dimension(:) :: a!
!$omp parallel workshare!
 a = 0.0!
!$omp end parallel workshare!
 !

–  It turns out that for GNU OpenMP (prior to GCC 4.5), the
workshare directive is implemented as a single !!! So we
need to implement workshare ourselves…

!$omp parallel default(none)&!
!$omp private(num_threads,my_id,lb,ub), &!
!$omp shared(buf)!
!$ num_threads = MIN(omp_get_max_threads(), SIZE(buf))!
!$ my_id = omp_get_thread_num()!
 IF (my_id < num_threads) THEN!
 lb = (SIZE(buf)*my_id)/num_threads!
 ub = (SIZE(buf)*(my_id+1))/num_threads - 1!
 buf(lb:ub) = 0.0!
 END IF!
!$omp end parallel!
 !

Mixed Mode Parallelism in CP2K: A Case Study 28

CP2K: Miscellaneous Gotchas
•  Thread to core binding does not work as expected with

GCC on Cray CNL.
–  By default, the operating system binds threads to cores. This is

typically what we want for HPC codes, since we usually only have
as many threads as cores.

–  However, if entering a parallel region with less threads e.g. using
the num_threads clause, GCC terminates the unneeded threads,
and when starting them up again later, binds them starting at core
0. So may eventually end up with all threads on a single core!

–  Work arounds:
– Use –cc none aprun flag to allow threads to migrate to idle

cores (but may suffer performance hit)

–  Avoid using num_threads, manually idle threads inside a
parallel region

Mixed Mode Parallelism in CP2K: A Case Study 29

CP2K: Performance Results

•  Results so far (H2O-64):
–  Fastest pure MPI run = 85s on 144 cores
–  Fastest 2 threads/task = 72s on 288 cores
–  Fastest 6 threads/task = 64s on 1152 cores
–  Fastest 12 threads/task = 63s on 2304 cores

Bench_64 Performance

1

10

100

1000

10 100 1000 10000

Cores

Pe
rf

or
m

an
ce

MPI Only
2 th
6 th
12 th
linear

Mixed Mode Parallelism in CP2K: A Case Study 30

CP2K: Performance Results

•  Results so far (W216):
–  Fastest pure MPI run = 1662s on 576 cores
–  Fastest 2 threads/task = 1047s on 2304 cores
–  Fastest 6 threads/task = 816s on 4608 cores
–  Fastest 12 threads/task = 665s on 9216 cores (and more?)

10

100

1000

10 100 1000 10000

Pe
rf

or
m

an
ce

Cores

W216 Performance

MPI Only

2 th

6 th

12 th

linear

Mixed Mode Parallelism in CP2K: A Case Study 31

CP2K: Summary

•  Benefits of mixed-mode OpenMP/MPI
–  Using multiple threads per task increases scalability by factor of T
–  Can get a faster time to solution (~25% at expense of more AUs)
–  Small runs may be slower with more threads (as the unthreaded
sections are more significant)
–  Even greater speedup when used in load-imbalanced case (less
MPI tasks -> better load balance)

•  Also, new sparse matrix library DBCSR by Borstnik et al
(Zurich)
–  High scalability (MPI)
–  Designed with OpenMP threads for matrix operations
–  Currently under revision, proposed use of OpenMP 3.0 tasks for
threaded recursive sparse matrix multiply

Mixed Mode Parallelism in CP2K: A Case Study 32

CP2K: Summary

•  PRACE WP7.2 Applications Enabling with Communities

–  Project Proposal submitted to improve and extend OpenMP
parallelism within CP2K

–  Aim to demonstrate the value of using mixed-mode version of the
code to user groups across Europe

–  Will use a set of real user-supplied test cases to benchmark
changes and guide development.

–  If you use CP2K, or know a group who does, please get in touch:

ibethune@epcc.ed.ac.uk

Mixed Mode Parallelism in CP2K: A Case Study 33

CP2K: Summary

Thanks for listening!

Questions / Comments / Feedback?

ibethune@epcc.ed.ac.uk

