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Motivation
Diagrammatic Determinantal Quantum Monte Carlo
(DDQMC) algorithms are used to solve quantum im-
purity models such as the Anderson model. The cal-
culation of acceptance rates and observables during
the Monte Carlo walk involves linear algebra oper-
ations whose computational expense increases with
decreasing temperature. Thus, the lower boundary
of the treatable temperature range is limited by the
available compute capacity. In order to make use of
GPUs as cheap and powerful accelerators parts of a
DDQMC code (CT-INT, [GML+11]) were ported to
CUDA [Sch13].
All performance numbers presented here were obtained
using one NVIDIA C2050 card for the accelerated code
and a 2.67GHz Intel Xeon processor for the serial parts.

DDQMC

The CT-INT algorithm [GML+11] is based on splitting
the Hamiltonian into a non-interacting and an inter-
acting part

H = H0 + HI

and expanding the partition function in a series of di-
agrams

Z = tr
(
e−βH

)
= tr

(
e−βH0Tτ exp

(
−
∫ β

0

dτHI(τ )

))
=
∑

k

∫ β

0

..

∫ β

τk−1

i2ktr
(
e−βH0HI(τk)..HI(τ1)

)
dτ1..dτk︸ ︷︷ ︸

wc

=
∑

c

wc

with configurations

c = (k, τ1, ..., τk) ≡ (k, ~τ ) .

Via Wick’s theorem one obtains

wc = Z0
(−U)k

k!
det M↑k det M↓kdτ1...dτk ,

where Z0 = Tr
(
e−βH0

)
and

(Mσ
k )ij = G 0

σ(τi − τj)
with G 0

σ(τ ) the non-interacting Green’s function. The
idea of DDQMC is now to stochastically sample the
diagram series using a Metropolis-Hastings algorithm
with updates

(k, τ1, ..., τk)→ (k + 1, τ1, ..., τk, τk+1)

(k, τ1, ..., τk)→ (k − 1, τ1, ..., τl−1, τl+1, ..., τk)

in the configuration space and acceptance rates

R = αk(β)
det M↑k+1 det M↓k+1

det M↑k det M↓k
,

which can be implemented computationally efficiently
by the observation that

Mσ
k+1 =

(
Mσ

k Q
R s

)
⇒

det Mσ
k+1

det Mσ
k

= s − R(Mσ
k )−1Q .

In order to obtain the interacting Green’s function the
observable

G̃ c
σ(ωn) =

∑
ij

e iωn(τi−τj)
(

(Mσ
k )−1

)
ij

is measured in the course of the MC calculation for
O(10) frequencies ωn.

Remark: As the acceptance rate depends on the tem-
perature via αk(β), the average perturbation order or
the average dimension of M occurring in the MC cal-
culation are temperature dependent, respectively.

Performance of the serial code

The core of the code is a common MC loop:

Initial
setup

Propose new

diagram∑
ij aiM

(k)
ij bj

Accept/reject

update

M(k) → M(k±1)

Measurement∑
ij e∆τij M

(k)
ij

Computational expense and scaling:
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The compute time is almost completely spent on the
measurement, which leads to quadratic scaling of the
execution time with increasing average perturbation
order (= average matrix size). Thus, one can expect
considerable performance enhancements when this
part of the code is efficiently parallelised.

CUDA kernels

For the measurement

Wkn =
∑
pq

e iωn(τp−τq)
(

(Mσ
k )−1

)
pq

needs to be evaluated. This maps nicely onto the
subsequent calling of two CUDA kernels , 1 and 2 :

2 Wkw =
∑

pq Aw
pq

1 Aw
pq =expFun(w , τp − τq)×M−1

pq

1 2

intermediate
result

input
data

final
result

A0
pq

A1
pq

A2
pq

A3
pq

M−1
pq

τ c
p

τ a
p

Wk0

Wk1

Wk2

Wk3

Crucial for obtain-
ing any speedup is
at this point that
the small amount of
input data (M−1)
is multiplied on the
device by a factor
of O(10) such that
the massive thread
parallelism offered
by the GPU can be
made use of.

Memory transfer optimisation

In the initial implementation device memory was allo-
cated and freed before and after each measurement,
respectively. Multiple little chunks of data were trans-
ferred for each measurement.
Profiling showed that

• 75% of the overheads are cudaMalloc or
cudaFree

• only 12% of the available PCIe bandwidth is used in
average.

Optimisations applied to improve the performance:

•Reduced number of malloc/frees (on device)

•Transfer data in larger chunks to increase bandwidth

Thereby performance was significantly improved:
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Asynchronous measurements

The updates are independent of preceding measure-
ments. Thus, the measurement and subsequent up-
dates can be performed in parallel on GPU and CPU,
respectively.

updates

overheads

memcpy

exp-kernel

add-kernel

CUDA function call

time

cost for synchronous measurement

cost for
asynchronous measurement

1

2

GPU

CPU

GPU

CPU

Asynchronous execution of
the measurements cuts
the total execution time
by almost one third on the
largest matrix size. 0
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Results

•Shares in execution time and overall speedup
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•Contributions from individual optimisations

optimisation speedup
none (serial code) 1.00
kernel implementation 44.3
optimised kernels 1.19
optimised memory transfer 1.38
asynchronous measurement 1.42
aggregate 103.5

Summary

•The measurement of the DDQMC algorithm is
well suited for acceleration on GPUs.

•Avoiding redundant memory allocations and
performing measurements asynchronously
improved the performance of the accelerated code
considerably.

•An overall speedup of 103.5× was achieved on
the whole code for the largest matrix size.
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