

Overview

lebcc

- Background
- Classical Atomistic Simulation
- Essential Quantum Mechanics
- DFT: Approximations and Theory
- DFT: Implementation using plane waves and psuedopotentials
- Summary

Density Functional Theory For Dummies

Background

epco

• Code Usage on HECToR (2011-12) by CPU Time:

Rank	Code	CPU Time	Method
1	VASP	3,436,163	DFT
2	CP2K	1,388,231	DFT
3	GROMACS	1,004,256	Classical
4	DL_POLY	800,829	Classical
5	CASTEP	684,149	DFT
9	ChemShell	313,364	DFT/ Classical
12	LAMMPS	238,586	Classical
13	ONETEP	157,370	DFT

• 53% of all CPU time used by Chemistry / Materials Science

Density Functional Theory For Dummies

Classical Atomistic Simulation

epco

- The main elements of the simulation model are:
- Particles

- Force field
 - Pair potentials
 - Three-body
 - Four-body
 - e.g. CHARMM, GROMOS, AMBER, AMOEBA, ReaxFF ...

Density Functional Theory For Dummies

Classical Atomistic Simulation

- Molecular Dynamics
 - Newton's 2nd Law

$$F = ma$$

- Integrate using e.g. Velocity Verlet algorithm

$$r(t), \dot{r}(t) \rightarrow r(t + \delta t), \dot{r}(t + \delta t)$$

- Structural Optimisation
 - Minimise total energy w.r.t. atomic positions

Density Functional Theory For Dummies

Classical Atomistic Simulation

- Successes:
 - Computationally cheap and parallelises well (> 1,000,000,000 atoms on 10,000 CPUs)
 - Able to predict mechanical properties
 - Density, elasticity, compressability, heat capacity (of insulators)
 - Can predict structure
 - e.g. protein folding
- Failures:
 - Anything involving electron transfer (i.e. all of Chemistry!)
 - Bonding, electrochemistry
 - Heat capacity of metals
 - Electronic structure/conductivity
 - Magnetic properties
 - etc.

Density Functional Theory For Dummies

Essential Quantum Mechanics

- lepcc
- We need a model which can describe electrons...
- ... so turn to Quantum Mechanics the Physics of the very small.
 - Thanks to Planck, Heisenberg, Einstein, Schrödinger et al, 1920s
- No longer think of point particles

Density Functional Theory For Dummies

0

Essential Quantum Mechanics

epco

• Instead, particles are described by a wave-function:

$$\Psi(\vec{r},t)$$

 No longer have a defined position but instead a probability distribution function:

Density Functional Theory For Dummies

Essential Quantum Mechanics

- epcc
- The wavefunction captures *all* the observable behaviour of the particle.
- To compute a particular property (or observable) we apply the corresponding operator and extract the property as an eigenvalue (e.g. linear momentum):

$$\hat{P}_{x}\Psi(\vec{r},t) = -i\hbar \frac{\partial}{\partial x}\Psi(\vec{r},t) = p_{x}\Psi(\vec{r},t)$$

THE RESIDENCE OF THE PARTY OF T

Density Functional Theory For Dummies

11

Essential Quantum Mechanics

- The central equation(s) of Quantum Mechanics is(are) the Schrödinger's Equation(s)
- In the general, time-dependent form:

$$\hat{H}\Psi(\vec{r},t) = i\hbar \frac{\partial}{\partial t} \Psi(\vec{r},t)$$

 Wavefunctions which are 'stationary states' (the PDF is not time dependent) are described by the time-independent SE:

$$\hat{H}\Psi(\vec{r}) = E\Psi(\vec{r})$$

Density Functional Theory For Dummies

Essential Quantum Mechanics

epcc

• For atomistic simulation, we typically have many atoms, each with many electrons, so the wavefuction depends on *all* the atomic and electronic coordinates (and time):

$$\Psi(\vec{R}_1, \vec{R}_2, ..., \vec{R}_N, \vec{r}_1, \vec{r}_2, ..., \vec{r}_n, t)$$

- This many-body wavefunction is a non-trivial (and unknown) coupling between all the particles in our system
- Too hard to deal with directly, so start making approximations...

Density Functional Theory For Dummies

40

DFT: Approximations and Theory

• The Born-Oppenheimer approximation (1927)

- Nuclei are much more massive than electrons and move much slower (by ~10³-10⁵ times)
- So we can consider the nuclei to be fixed at some particular time t and solve the Time-Independent Schrödinger Equation for the electronic system in an external potential created by the nuclei:

$$\Psi(\vec{R}_{1}, \vec{R}_{2}, ..., \vec{R}_{N}, \vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{n}, t)$$

$$\downarrow$$

$$\Psi(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{n})$$

Density Functional Theory For Dummies

DFT: Approximations and Theory

- B-O Molecular Dynamics
 - Solve the electronic system to get a total electronic energy as a function of the nuclear coordinates
 - Then evolve the nuclear system with the electronic energy acting as a potential i.e.

$$E(\vec{R}_I) \rightarrow \vec{F}_I = \frac{\partial E(R_I)}{\partial \vec{R}_I}$$

- And repeat…
- Can also apply all of our techniques from classical atomistic simulation to get structures, dynamics, mechanical properties ...
- Not to be confused with Car-Parrinello Method (CPMD)

Density Functional Theory For Dummies

15

DFT: Approximations and Theory

- We need to solve the TISE to get the total energy of the systems but what ingredients go into our Hamiltonian?
 - Kinetic energy (of the electrons nuclei are stationary)
 - Potential energy
 - of the electrons interacting with the nuclei
 - and electrons interacting with other electrons

$$\left[-\frac{1}{2} \nabla^2 + \hat{V}_{ext}(\{\vec{R}_I\}, \{\vec{r}_i\}) + \hat{V}_{e-e}(\{\vec{r}_i\}) \right] \Psi(\{\vec{r}_i\}) = E \Psi(\{\vec{r}_i\})$$

Density Functional Theory For Dummies

DFT: Approximations and Theory

- First attempt, guess many-particle wave function is a linear combination of products (Slater Determinant) of singleparticle wave functions (Hartree & Fock, 1935)
 - First practical implementation in 1969 (Gaussian 70)
 - Led to Nobel Prize in Chemistry (1998) for John Pople
 - Computationally demanding $\geq O(n^4)$
 - So limited to relatively small numbers of atoms (<100)
- H-F methods are often referred to as 'wave function theory'
 - Even with the H-F ansatz, the many-particle wave function is still too complicated for practical use, so we make further simplifications...

Density Functional Theory For Dummies

17

DFT: Approximations and Theory

- Hohenberg-Kohn Theorems, 1964
 - The external potential electron density $n(\vec{r})$ $\hat{V}_{ext}(\{\vec{r_i}\})$ is a unique functional of the
 - i.e. if we know $n(\vec{r})$ (a 3-dimensional function), we can calculate all the properties of the system as if we knew $\Psi(\vec{r}_1,\vec{r}_2,...,\vec{r}_n)$, a 3n-dimensional function!
 - A variational principle for electronic density exists:

$$E_{v}[n(\vec{r})] = T[n(\vec{r})] + U[n(\vec{r})] + V[n(\vec{r})], \quad E[\tilde{n}(\vec{r})] \ge E_{0}$$

- The correct density gives the lowest Energy
- So by iteratively improving our guess, we can approach the 'correct' density.

Density Functional Theory For Dummies

DFT: Approximations and Theory

- epcc
- One final step needed to compute these functionals...
- Kohn-Sham Method (1965) (Kohn shared NP with Pople)
 - Instead of the the many-body system of interacting electrons, define a set of 'KS-orbitals' (c.f. wavefuctions) of fictitious, non-interacting electrons moving in an effective potential:

$$V_{KS}(\vec{r}) = V_{ext}(\vec{r}) + V_{H}(n(\vec{r})) + V_{XC}(n(\vec{r}))$$

- Then the orbitals which satisfy the K-S Equations (c.f. Schrödinger Eq) give the same density as the interacting system!
- All the electron-electron interactions are included in the exchangecorrelation potential
- NB: effective potential depends on the density, which depends on the potential ...

Density Functional Theory For Dummies

DFT: Implementation

- How do we represent each of the objects in KS-DFT in a computer program?
 - From here-on, assume we are looking at a periodic system (e.g. crystal)
- Electron density is easy just use a 3D grid
 - Typical grid sizes ~100s of grid points for simulation cell of side 10Å
 - Stored as a 3D array...

Density Functional Theory For Dummies

21

DFT: Implementation

- What about the orbitals ('wave-functions')?
 - We would like:
 - Compact (low memory)
 - Efficient (convenient for numerical algorithms)
 - Accurate
 - Simply discretising on a grid does not give accurate enough derivatives for K.E. term in K-S equations.
 - Generally, write an orbital (or rather the corresponding periodic Bloch function) as a sum of basis functions
 - Store just the co-efficients of each basis function
 - Rewrite the K-S equations in matrix form

$$H_{j}c_{ij} = \varepsilon_{i}c_{ij}$$

Density Functional Theory For Dummies

- · Choices for basis functions
 - Gaussian functions
 - Small number needed per orbital
 - Analytic forms for integrals, derivatives^o
 - Atom-centred, so need to take extra care

- Numerical basis sets
 - Store a basis function explicitly on a small grid
 - Numerical integration, differentiation (hard to control accuracy)

0.15

0.05

- Plane Waves
 - Expand each orbital as a Fourier Series, and store G-space coefficients on a regular grid
 - Use FFT to get back to real-space (e.g. to compute density)
 - Large number of basis functions (10,000+) so cannot store H

Density Functional Theory For Dummies

23

DFT: Implementation

- Many common plane-wave codes
 - E.g. VASP, CASTEP, Quantum Espresso (PWscf), CPMD, Abinit
- Hamiltonian (total energy) calculated partly in real-space, and partly in Fourier space:
 - Real space: E_{XC} , E_{II}
 - Fourier space: E_K, E_H, E_V
- Cost of calculation O(N²), N the number of electrons
 - For implementations which use a minimization method for solving the K-S Equations
 - Or O(N³) if matrix diagonalisation is used

Density Functional Theory For Dummies

Psuedopotentials: reducing N Recall electrons are arranged in 'shells' around the nucleus Small electron density and very large electrostatic potential at the core Would need a very large basis set to represent core electron wave functions Chemistry tells us not to care about them! Model the valence electrons only.

Summary

- · Comments on Software:
 - Vast number of implementation choices has led to a profusion of codes:

70(!) are listed on http://en.wikipedia.org/wiki/
List_of_quantum_chemistry and solid-state physics software

- Many research groups only use one (or a few) codes, many years of effort invested in developing scripts, 'local knowledge', which parameters should be tweaked (and which 'just work')
 - As a result, researchers will not always use the 'best tool for the job'

Density Functional Theory For Dummies

27

Summary

- Comments on Software (cont):
 - Benchmarking of applications against each other is hard
 - How to be sure they are solving the 'same' problem?
 - Many code have unique features which make them indispensible (for some problems, for some users)
 - May be specifically forbidden for publishing performance data!
 - http://www.bannedbygaussian.org/

- Significant usability problem / steep learning curve for many codes
 - Helped by integration with GUIs, automation tooling, still more to be done...

Density Functional Theory For Dummies

Summary

lebcc

- With care:
 - "First-principles methods may be used for subtle, elegant and accurate computer experiments and insight into the structure and behaviour of matter.", K. Refson

Density Functional Theory For Dummies

20

Summary

epcc

- Without care:
 - "First-principles results may be worthless nonsense", K. Refson

Density Functional Theory For Dummies

Summary

- Materials science / computational chemistry accounts for >50% of the compute time used on HECToR
- Density Functional Theory (and its implementation) are arguably the most significant developments in the field in the last 40 years
- Lots of work (both physical theory and code development) done to produce reasonably efficient codes for modern HPC
- Most codes parallelise (quite) well, but lots for us still to do!

A COLUMN TWO

Density Functional Theory For Dummies

31

References

- Payne et al, Rev. Mod. Phys. 64, 1045-1097 (1992)
- Richard M. Martin, "Electronic Structure: Basic Theory and Practical Methods", Cambridge University Press, 2004
- K. Refson, "CCP5 Summer School 2011: First Principles Simulation"
- J. Hutter, "Ab initio Molecular Dynamics and Density Functional Theory", 1st CP2K CECAM Tutorial, 2009, http://www.cecam.org/workshop-0-273.html
- K. Burke, "The ABC of DFT", http://dft.eci.edu/doc/g1.pdf

will!

Density Functional Theory For Dummies